LOCALLY FLAT 2-KNOTS IN $S^2 \times S^2$ WITH THE SAME FUNDAMENTAL GROUP

YOSHIHISA SATO

ABSTRACT. We consider a locally flat 2-sphere in $S^2 \times S^2$ representing a primitive homology class ξ , which is referred to as a 2-knot in $S^2 \times S^2$ representing ξ . Then for any given primitive class ξ , there exists a 2-knot in $S^2 \times S^2$ representing ξ with simply-connected complement. In this paper, we consider the classification of 2-knots in $S^2 \times S^2$ whose complements have a fixed fundamental group. We show that if the complement of a 2-knot S in $S^2 \times S^2$ is simply connected, then the ambient isotopy type of S is determined. In the case of nontrivial π_1 , however, we show that the ambient isotopy type of a 2-knot in $S^2 \times S^2$ with nontrivial π_1 is not always determined by π_1 .

1. Introduction

Let ζ and η be natural generators of $H_2(S^2 \times S^2; \mathbb{Z})$ represented by the cross-section and fiber of the projection $S^2 \times S^2 \to S^2$ onto the first factor with $\zeta \cdot \zeta = \eta \cdot \eta = 0$ and $\zeta \cdot \eta = \eta \cdot \zeta = 1$. A 2-knot S in $S^2 \times S^2$ is a locally flat submanifold of $S^2 \times S^2$ homeomorphic to S^2 . The fundamental group of the complement of S is referred to as the fundamental group of S. The exterior of S is the closure of the complement of a tubular neighborhood of S in $S^2 \times S^2$. Two 2-knots in $S^2 \times S^2$ are equivalent if they are ambient isotopic, that is, there exists an isotopic deformation $F: (S^2 \times S^2) \times I \to (S^2 \times S^2) \times I$ such that the homeomorphism F_1 takes one to the other. Kuga and Freedman have characterized those homology classes in $S^2 \times S^2$ that can be represented by 2-knots in $S^2 \times S^2$ as follows. Kuga has shown in [10] that the homology class $\xi = p\zeta + q\eta$, p, $q \in \mathbb{Z}$, can be represented by a smooth 2-knot in $S^2 \times S^2$ if and only if $|p| \le 1$ or $|q| \le 1$. Meanwhile, Freedman has shown in [6] that if p and q are relatively prime integers, then ξ can be represented by a 2-knot in $S^2 \times S^2$.

Since the problem of classifying 2-knots in $S^2\times S^2$ is interesting, we consider in this paper the problem of whether the equivalence class of a 2-knot in $S^2\times S^2$ is determined by its fundamental group. For any integer p, let $\rho_p\colon S^2\to S^2$ be the canonical smooth map of degree p, and let $\phi_p\colon S^2\to S^2\times S^2$ be

Received by the editors September 29, 1988 and, in revised form, February 18, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 57N13, 57R40. Key words and phrases. 2-knot, $S^2 \times S^2$, homology 3-sphere.

the embedding defined by $\phi_p(x)=(x,\rho_p(x))$. Then if we write Σ_p for the image $\phi_p(S^2)$, Σ_p is the standard smooth 2-knot in $S^2\times S^2$ representing $\zeta+p\eta$. We obtained in [13] the following result: If the complement of a 2-knot S in $S^2\times S^2$ representing $\zeta+p\eta$ is simply connected, then S and Σ_p are equivalent. In this paper we prove the unknotting theorem in more general cases: If the complement of a 2-knot S in $S^2\times S^2$ representing $p\zeta+q\eta$ is simply connected, then the equivalence class of S is determined. Moreover, we prove that the equivalence class of a 2-knot in $S^2\times S^2$ is not always determined by the fundamental group itself.

This paper is organized as follows. In §2, we consider the case that the fundamental group of a 2-knot is trivial. We show that for any relatively prime integers p and q, there is a 2-knot representing $p\zeta + q\eta$ with simply-connected complement, and prove the unknotting theorem. We consider in §3 the case that the fundamental group of a 2-knot is nontrivial. We prove that there exist distinct 2-knots with the same fundamental group. In §4, we consider the problem of whether a homology 3-sphere bounds a smooth acyclic 4-manifold or not, and by using Kuga's theorem and our technique in §2, we present a family of homology 3-spheres that cannot bound smooth acyclic 4-manifolds.

The author would like to express his gratitude to Professors M. Kato and T. Kanenobu. He would also like to thank Professor O. Saeki for helpful conversations.

2. 2-knots in
$$S^2 \times S^2$$
 with trivial π_1

It is easy to see that if the homology class represented by a 2-knot S is not primitive, then $H_1(S^2 \times S^2 - S; \mathbb{Z})$ is nonzero. We begin with the following proposition.

Proposition 2.1. Let p and q be relatively prime integers. Then there exists a 2-knot in $S^2 \times S^2$ representing $p\zeta + q\eta$ with simply-connected complement.

Proof. Since g.c.d(p,q)=1, there are two integers a, b such that bp-aq=1. We consider the 3-manifold M obtained by surgery on the framed link L illustrated in Figure 1. The link L consists of two trivial knots K_1 and K_2 . Since $|(2pq)(2ab)-(bp+aq)^2|=1$, M is a homology 3-sphere, so that M bounds a topological contractible 4-manifold V. See [6]. Let W be the 4-manifold obtained by attaching two 2-handles h_1 and h_2 to the 4-disk D^4 along the framed link L (i.e., $W=D^4\cup h_1\cup h_2$). Set $X=W\cup_M V$, and X is a topological closed 4-manifold. Let B_i be a smooth 2-disk in D^4 which is the trivial knot K_i bounds, and let D_i be the core of h_i (i=1,2). Then $S_i=B_i\cup D_i\subset W$ is diffeomorphic to S^2 . Since the framing of K_1 is 2pq, a closed tubular neighborhood of S_1 is the D^2 -bundle D(2pq) over S^2 with Euler number 2pq. Since K_1 is trivial, W is the 4-manifold obtained by attaching the 2-handle h_2 to D(2pq). Hence, by the duality of handle-

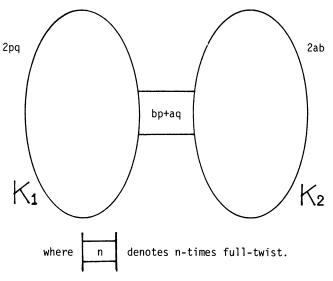


FIGURE 1

decompositions, we can view W as $(M \times I \cup h_2^*) \cup_{\partial} D(2pq)$, where h_2^* is the dual handle of h_2 and ∂ is the lens space L(2pq, 2pq - 1). Therefore, $X = Y \cup_{\partial} D(2pq)$, where $Y = V \cup_{M \times \{0\}} M \times I \cup h_2^*$. Then by van Kampen's theorem, $\pi_1(Y) = 1$ and $\pi_1(X) = 1$. Moreover, $\pi_1(X - S_1) \cong \pi_1(Y) = 1$. $H_2(X; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$ is generated by $[S_1]$ and $[S_2]$, and X has the intersection form

$$A = \begin{pmatrix} 2pq & bp + aq \\ bp + aq & 2ab \end{pmatrix}$$

with respect to these generators. Since the form A is even and indefinite, A is equivalent over $\mathbb Z$ to

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

In fact, if we let $(\mathbb{Z} \oplus \mathbb{Z}, A)$ and $(\mathbb{Z} \oplus \mathbb{Z}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$ be bilinear form spaces, then the matrix

$$B = \begin{pmatrix} p & a \\ q & b \end{pmatrix}$$

gives an isomorphism between them. Let $\{u,v\}$ and $\{\zeta,\eta\}$ be bases for the bilinear form spaces $(\mathbb{Z}\oplus\mathbb{Z},A)$ and $(\mathbb{Z}\oplus\mathbb{Z},\binom{0}{1}{0})$, respectively. The matrix B takes u to $p\zeta+q\eta$. Thus X has the intersection form $(\mathbb{Z}\oplus\mathbb{Z},\binom{0}{1}{0})$, and the homology class of S_1 , $[S_1]$, is $p\zeta+q\eta$. By Freedman's theorem, there is a homeomorphism $h\colon X\to S^2\times S^2$. Then the induced isomorphism $h_*\colon H_2(X;\mathbb{Z})\to H_2(S^2\times S^2;\mathbb{Z})$ gives an automorphism of $(\mathbb{Z}\oplus\mathbb{Z},\binom{0}{1})$. Since the automorphism group of this form space is $\{C\in GL(2,\mathbb{Z}); {}^tC\binom{0}{1}{0}\}$ $C=\binom{0}{1}{0}\}=\{\pm\binom{1}{0},\pm\binom{0}{1},\pm\binom{0}{1}\}$, $h_*=\pm\binom{1}{0}$ or $\pm\binom{0}{1}$. Thus the image $h(S_1)$ is a locally flat 2-sphere in $S^2\times S^2$ representing $\pm(p\zeta+q\eta)$ or $\pm(q\zeta+p\eta)$,

and $\pi_1(S^2 \times S^2 - h(S_1)) \cong \pi_1(X - S_1) = 1$. After changing the orientation of $S^2 \times S^2$ and/or the orientation of ζ and η (if necessary), $h(S_1)$ may represent $p\zeta + q\eta$. Therefore, $h(S_1)$ is a required 2-knot in $S^2 \times S^2$.

Our key lemma in this section is the following.

Lemma 2.2. Let p and q be relatively prime integers, and let S_1 and S_2 be 2-knots in $S^2 \times S^2$ representing $p\zeta + q\eta$. If the complements of S_1 and S_2 are simply connected, then there exists a homeomorphism of $S^2 \times S^2$ taking S_1 to S_2 .

Since we can prove this lemma in the same manner as [13], we only sketch the proof.

Proof (sketch). Let N_i be a closed tubular neighborhood of S_i and E_i the exterior of S_i (i=1,2). Then N_i is homeomorphic to D(2pq), and so the boundary ∂E_i of E_i is the lens space L(2pq,2pq-1), where $L(0,-1)=S^2\times S^1$. Hence $(S^2\times S^2,S_i)$ is pairwise homeomorphic to $(D(2pq)\cup_{\gamma_i}E_i,\nu(S^2))$, where $\gamma_i\colon L(2pq,2pq-1)\to L(2pq,2pq-1)$ is some gluing homeomorphism and $\nu\colon S^2\to D(2pq)$ is the zero section. By the isotopy extension theorem, it is easily seen that the homeomorphism type of 2-knots with exterior E_i depends only on the isotopy class of the homeomorphism γ_i . To prove Lemma 2.2, we need the following lemma.

Lemma 2.3. Suppose E_1 and E_2 are simply connected. Then E_1 is homeomorphic to E_2 . In particular if $(p,q)=(\pm 1,0)$ or $(0,\pm 1)$, then E_1 and E_2 are homeomorphic to $S^2\times D^2$.

Proof. We give E_i the orientation opposite to the one inherited from $S^2 \times S^2$. It follows that the intersection form $(H_2(E_i;\mathbb{Z}),\cdot)$ is isomorphic to $(\mathbb{Z},(2pq))$, where $(2pq)\colon \mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ is the bilinear form defined by (2pq)(1,1)=2pq. Hence, E_i is a simply-connected compact 4-manifold with boundary L(2pq,2pq-1) and the intersection form $(\mathbb{Z},(2pq))$. In [2], Boyer calculated the set of all oriented homeomorphism types of simply-connected compact 4-manifolds with given boundary and given intersection form. In the case of $(p,q)=(\pm 1,0)$ or $(0,\pm 1)$, Remarks (5.3) of [2] say that E_1 and E_2 are homeomorphic to $S^2\times D^2$. Next we consider the case of $pq\neq 0$. Since g.c.d(p,q)=1, there are two integers a, b such that bp-aq=1. If we set $u_i=[S_i]=p\zeta+q\eta$ and $v=a\zeta+b\eta$, then $v_i=1$ and $v_i=1$ generate $v_i=1$ and $v_i=1$ where $v_i=1$ is a generator of $v_i=1$ and $v_i=1$ is represented by $v_i=1$ in the $v_i=1$ and $v_i=1$ is represented by $v_i=1$ and $v_i=1$ and $v_i=1$ in the case of $v_i=1$ and $v_i=1$ is homeomorphic to $v_i=1$. Since $v_i=1$ is an an analysis of $v_i=1$ is homeomorphic to $v_i=1$ and $v_i=1$ and Remarks 5.6 of [2] that $v_i=1$ is homeomorphic to $v_i=1$.

Return to the proof of Lemma 2.2. Since the complements of S_1 and S_2 are simply connected, there is a homeomorphism $h: E_1 \to E_2$. Let \tilde{h} be the

restriction of h to ∂E_1 . If the homeomorphism $\gamma_2^{-1}\tilde{h}\gamma_1$: $\partial D(2pq) \to \partial D(2pq)$ extends to a homeomorphism g of $(D(2pq), \nu(S^2))$, we have the following required homeomorphism:

$$\varphi: (D(2pq) \cup_{\gamma_1} E_1, \nu(S^2)) \to (D(2pq) \cup_{\gamma_2} E_2, \nu(S^2))$$

by setting

$$\varphi = \left\{ \begin{array}{ll} g & \text{ on } D(2pq), \\ h & \text{ on } E_1. \end{array} \right.$$

Now we remark that in the case of pq=0, $\gamma_2^{-1}\tilde{h}\gamma_1$: $S^2\times S^1\to S^2\times S^1$ is not isotopic to the twist $\tau\colon S^2\times S^1\to S^2\times S^1$ defined by $\tau((\theta,\phi),\psi)=((\theta+\psi,\phi),\psi)$, since E_1 and E_2 are homeomorphic to $S^2\times D^2$ and the second Stiefel-Whitney class of $S^2\times S^2$ is trivial. Hence, by investigating the homeotopy group of L(2pq,2pq-1), it follows that there is an extension g as the above. See [1], [8] and [9]. This completes the proof. \square

Theorem 2.4. Let S_1 and S_2 be 2-knots in $S^2 \times S^2$ as in Lemma 2.2. If the complements of S_1 and S_2 are simply connected, then S_1 and S_2 are equivalent, i.e., ambient isotopic.

Proof. In the case when |p|=1 or |q|=1, we proved in [13]. We may assume that $|p| \ge 2$ and $|q| \ge 2$. It follows from [14] that the homeotopy group of $S^2 \times S^2$ corresponds to the subgroup of $GL(2; \mathbb{Z})$ consisting of

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

with respect to generators ζ and η .

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

are orientation preserving, while

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

are orientation reversing. By Lemma 2.2, there is a homeomorphism ϕ of $S^2 \times S^2$ taking S_1 to S_2 . Since $\phi_*(p\zeta+q\eta)=\phi_*([S_1])=\pm[S_2]=\pm(p\zeta+q\eta)$, $\phi_*=\pm\binom{1\ 0}{0\ 1}$. We consider the case of $\phi_*=\binom{-1\ 0}{0\ -1}$. Then $\phi|_{S_1}$ is orientation reversing. Let $-S_2$ be S_2 with opposite orientation. We decompose $(S^2\times S^2,\pm S_2)$ as in Lemma 2.2: $(S^2\times S^2,\pm S_2)=(D(2pq)\cup_{\gamma^\pm}E^\pm,\nu(S^2))$. Here we may assume that γ^\pm is the identity map. Let $g\colon D(2pq)\to D(2pq)$ be the orientation-preserving homeomorphism such that its restriction to $\nu(S^2)$ is the antipodal map and its restriction to each fiber is the map induced on the unit disk in the complex plane by complex conjugation. Then $g'=g|\partial D(2pq)$ is a homeomorphism of $\partial D(2pq)$ such that $g'_*(\partial w_+)=\pm\partial w_-$, where w_\pm is a generator of $H_2(E^\pm,\partial E^\pm;\mathbb{Z})\cong\mathbb{Z}$. Since Boyer's results are based on

a theorem that gives necessary and sufficient conditions for the existence of a homeomorphism between simply-connected 4-manifolds extending a given homeomorphism of their boundaries, the fact that $g'_{\star}(\partial w_{+}) = \pm \partial w_{-}$ implies that there is an orientation-preserving homeomorphism $h \colon E^{+} \to E^{-}$ such that $h|_{\partial E} = g'$. See [2]. Let $\psi \colon S^{2} \times S^{2} \to S^{2} \times S^{2}$ be the orientation-preserving homeomorphism defined from g and h. From the definition of g, it is easily seen that $\psi(S_{2}) = -S_{2}$. Hence $\psi \cdot \phi$ is a homeomorphism of $S^{2} \times S^{2}$ taking S_{1} to S_{2} such that $(\psi \cdot \phi)_{\star}$ is the identity map.

Thus, we have a homeomorphism ϕ' of $S^2 \times S^2$ taking S_1 to S_2 such that ϕ'_* is the identity map, so ϕ' is isotopic to the identity map. Therefore, S_1 and S_2 are equivalent. This completes the proof. \square

Remark 2.5. Let K be a 2-knot in S^4 and S a 2-knot in $S^2 \times S^2$. Then we obtain another 2-knot in $S^2 \times S^2$ by forming the connected sum of pairs $(S^2 \times S^2, S)$ and (S^4, K) . However, we do not always get a new 2-knot in $S^2 \times S^2$ in this manner. In fact, Theorem 2.2 says that if $\pi_1(S^2 \times S^2 - S) = 1$, then the connected sum of S with any 2-knot in S^4 is always equivalent to the original 2-knot S. See [13].

Remark 2.6. Let S_1 and S_2 be 2-knots in $S^2 \times S^2$ representing $p\zeta + q\eta$, where $p \neq q$ and $pq \neq 0$. If there is a homeomorphism g of $S^2 \times S^2$ taking S_1 to S_2 such that $g|_{S_1}$ is orientation preserving, then S_1 and S_2 are equivalent.

3. 2-knots in
$$S^2 \times S^2$$
 with nontrivial π_1

We describe a construction of 2-knots in $S^2 \times S^2$ from [11] and [13]. Let K be a 2-knot in S^4 and C a smoothly embedded circle in $S^4 - K$. Since we may assume that C is standardly embedded in S^4 up to ambient isotopy, the closure of the complement of a tubular neighborhood of C in S^4 is $S^2 \times D^2$. Then K is contained in $S^2 \times D^2$, so that this gives us a 2-knot S in $S^2 \times S^2 = S^2 \times D^2 \cup S^2 \times D^2$. If C is homologous in $S^4 - K$ to a meridian of K, then the 2-knot S represents S [13]. Moreover, by van Kampen's theorem S is isomorphic to S in $S^2 \times S^2 - S^2 \times S^2 - S^2 \times S^2 + S^2 \times S^2$

We are concerned with the following two 2-knots in $S^2 \times S^2$ representing ζ . Let $K \subset S^4$ be the 5-twist spun 2-knot of the trefoil [15]. Then $\pi_1(S^4 - K) \cong \mathscr{D} \times \mathbb{Z}$, where \mathscr{D} is the binary dodecahedral group

$$\langle a, b; a^3 = b^5 = (ab)^2 \rangle$$

and $\mathbb Z$ is generated by μ which is homologous to a meridian of K. The group $\mathscr D$ is perfect and of order 120. The center of $\mathscr D$ is generated by $c=a^3$ in $\mathscr D$, and it is of order 2. Let C_1 and C_2 be embedded circles representing μ and μc^{-1} in $\pi_1(S^4-K)$, respectively. Let S_1 be the 2-knot in $S^2\times S^2$ constructed

from K and C_1 , and let S_2 be the 2-knot in $S^2 \times S^2$ constructed from K and C_2 . Let E_1 and E_2 be exteriors of S_1 and S_2 , respectively. Then both S_1 and S_2 represent ζ , and $\pi_1(S^2 \times S^2 - S_1) \cong \pi_1(S^2 \times S^2 - S_2) \cong \mathscr{D}$. Thus S_1 and S_2 are 2-knots in $S^2 \times S^2$ that represent ζ and whose fundamental groups are isomorphic to \mathscr{D} .

Now we investigate meridian elements in \mathscr{D} of the preceding 2-knots in $S^2 \times S^2$. We note that the group of the 5-twist spun 2-knot of the trefoil, $\pi_1(S^4 - K)$, has the following presentation:

$$\pi_1(S^4 - K) = \langle u, v; uvu = vuv, v = u^{-5}vu^5 \rangle,$$

where u is a meridian and the second relation comes from the 5-twisting. Zeeman showed in [15] that $\pi_1(S^4 - K)$ is isomorphic to

$$\langle x, y, z; x^5 = (xy)^3 = (xyx)^2, z^{-1}xz = y, z^{-1}yz = yx^{-1} \rangle$$

by making the substitution $u \to z$, $v \to xz$. Then z is a meridian. By making the substitution $x \to b$, $xy \to a$, this group is isomorphic to

$$\langle a, b, z; a^3 = b^5 = (ab)^2, z^{-1}bz = b^{-1}a, z^{-1}b^{-1}az = b^{-1}ab^{-1} \rangle$$

 $\cong \langle a, b, z, \mu; a^3 = b^5 = (ab)^2, \mu = ab^{-1}z, [\mu, a] = [\mu, b] = 1 \rangle$
 $\cong \mathscr{D} \times \mathbb{Z}.$

Therefore, ba^{-1} and ba^2 in $\mathscr D$ are meridian elements of 2-knots S_1 and S_2 , respectively. Since a^3 in $\mathscr D$ is of order 2, ba^{-1} is of order 10. Also, since $ba^2=a^3(ba^{-1})$ and a^3 is an element in the center of $\mathscr D$, ba^2 is of order 5. Thus the order of a meridian element of S_1 is different from that of S_2 , so that there is not a ∂ -preserving homotopy equivalence $f\colon (E_1\,,\,\partial E_1)\to (E_2\,,\,\partial E_2)$, that is, two 2-knots S_1 and S_2 are inequivalent. Thus we have

Theorem 3.1. There exists 2-knots in $S^2 \times S^2$ representing ζ with fundamental group isomorphic to the binary dodecahedral group, but whose exteriors are not ∂ -preserving homotopy equivalent.

Remark 3.2. The complements of 2-knots S_1 and S_2 in $S^2 \times S^2$ as given earlier are not $K(\pi,1)$. In fact, $\pi_2(S^2 \times S^2 - S_i) \neq 0$ (i=1,2). Let S be either S_1 or S_2 , and let X be the complement of S. Then, since S represents $\zeta \in H_2(S^2 \times S^2; \mathbb{Z})$, $H_2(X; \mathbb{Z}) \cong \mathbb{Z}$. If we let $p: \widetilde{X} \to X$ be the universal covering, then we have a homomorphism $\tau \colon H_2(x; \mathbb{Z}) \to H_2(\widetilde{X}; \mathbb{Z})$ such that $p_*\tau(\alpha) = 120\alpha$. Here p_* is the homomorphism $H_2(\widetilde{X}; \mathbb{Z}) \to H_2(X; \mathbb{Z})$ induced by the projection p, and α is a generator $H_2(X; \mathbb{Z}) \cong \mathbb{Z}$. Hence, $\pi_2(X) \cong \pi_2(\widetilde{X}) \cong H_2(\widetilde{X}; \mathbb{Z})$ is not trivial.

4. CONCLUDING REMARKS

We consider in this section the problem of whether or not a given homology 3-sphere bounds a smooth acyclic 4-manifold. We have the Rohlin invariant

 $\mu\colon H^3\to\mathbb{Z}/2\mathbb{Z}$, where H^3 is the homology cobordism group of homology 3-spheres. If a homology 3-sphere M bounds a smooth acyclic 4-manifold, then $\mu(M)=0$. Some families of homology 3-spheres that bound smooth acyclic (or contractible) 4-manifolds are known. Meanwhile, the celebrated work of Donaldson [4] implies that if a homology 3-sphere M bounds a smooth 4-manifold with nonstandard definite intersection form, then M cannot bound a smooth acyclic 4-manifold. Also, Fintushel and Stern showed that if the invariant $R(a_1,\ldots,a_n)$ defined in [5] is positive, then the Seifert fibered homology 3-sphere $\Sigma(a_1,\ldots,a_n)$ cannot bound a smooth $\mathbb{Z}/2\mathbb{Z}$ -acyclic 4-manifold. However, we note that every homology 3-sphere bounds a topological contractible 4-manifold. See [6].

Definition 4.1. Let L be the following framed link in S^3 consisting of two knots J and K with linking number t and with framing m and n.

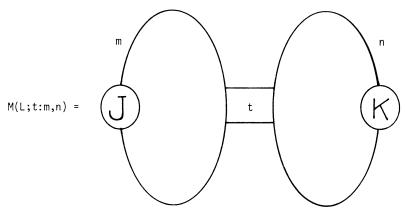


FIGURE 2

Then M(L; t: m, n) is defined as a 3-manifold obtained by Dehn surgery on the framed link L.

The order of $H_1(M(L; t: m, n); \mathbb{Z})$ is $|mn - t^2|$. Hence, if $|mn - t^2| = 1$, then M(L; t: m, n) is a homology 3-sphere.

Before stating the main result in this section, we notice the following. Since Donaldson's result in [3] extends without change to 4-manifolds with arbitrary fundamental groups [4], Kuga's result in [10] also extends to such 4-manifolds, that is,

Theorem 4.2. Let X be a closed smooth 4-manifold with the intersection form

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

with respect to ζ and η of $H_2(X; \mathbb{Z})$ /torsion $\cong \mathbb{Z} \oplus \mathbb{Z}$. Then the homology class $p\zeta + q\eta$ cannot be represented by a smoothly embedded 2-sphere in X provided $|p| \geq 2$ and $|q| \geq 2$.

Proof. This follows in the same manner as in [10].

Our main result in this section is the following.

Theorem 4.3. Let t be a positive odd integer. Let J and K be slice knots. Suppose that m and n are positive even integers such that $mn - t^2 = -1$. If |m-t| > 1 or |n-t| > 1, then M = M(L; t: m, n) cannot bound a smooth compact 4-manifold V with $\tilde{H}_{\sigma}(V; \mathbb{Q}) = 0$.

Hence, such an M does not bound a smooth acyclic 4-manifold.

Proof. Suppose that there is such a smooth 4-manifold V. Let W be the smooth 4-manifold obtained by attaching two 2-handles to D^4 along the framed link $L = J \cup K$. Then $X = W \cup_M V$ is a closed smooth 4-manifold with the intersection form

$$A = \begin{pmatrix} m & t \\ t & n \end{pmatrix}$$

with respect to some generators of $H_2(X;\mathbb{Z})$ /torsion $\cong \mathbb{Z} \oplus \mathbb{Z}$. Then there are x and y in $H_2(X;\mathbb{Z})$ such that $x^2 = m$, $y^2 = n$ and $x \cdot y = t$, and both x and y are represented by smoothly embedded 2-spheres in X. Since m and n are even integers with $mn - t^2 = -1$, A is equivalent over \mathbb{Z} to

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Hence, X has the intersection form

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

with respect to generators ζ and η of $H_2(X;\mathbb{Z})$ /torsion. For some integers p, q, r and s, $x=p\zeta+q\eta$ and $y=r\zeta+s\eta$. Since |m-t|>1 or |n-t|>1, it is seen that either $\min(|p|,|q|)$ or $\min(|r|,|s|)$ is greater than 1. Hence, there is a smoothly embedded 2-sphere in X representing $a\zeta+b\eta$ with $|a|\geq 2$, and $|b|\geq 2$, contradicting Theorem 4.2. This completes the proof. \square

Remark 4.4. (1) Let J and K be any knots, and let m and n be even integers with $mn - t^2 = -1$. Then $\mu(M(L; t: m, n)) = 0$. (2) When J and K are trivial knots, M(L; t: m, n) is the Brieskorn homology 3-sphere $\Sigma(t, |m-t|, |n-t|)$ if |m-t| > 1 and |n-t| > 1. Moreover,

$$R(t, |m-t|, |n-t|) = 1.$$

(3) If J and K are slices, then $M = M(L; \pm 1; 0, 0)$ is embedded smoothly in S^4 . See [7]. Hence, M bounds a smooth acyclic 4-manifold.

We can find the following lemma in [12].

Lemma 4.5. If a homology 3-sphere M is embedded smoothly in $S^2 \times S^2$, then M bounds a smooth acyclic 4-manifold.

Since every homology 3-sphere admits a locally flat embedding into S^4 , it also admits such an embedding into $S^2 \times S^2$. However, Theorem 4.3 and Lemma 4.5 imply the following proposition.

Proposition 4.6. There exists a μ -invariant 0 homology 3-sphere that cannot be embedded smoothly in $S^2 \times S^2$.

REFERENCES

- 1. F. Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), 305-314.
- S. Boyer, Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986), 331-357.
- 3. S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315.
- 4. ____, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geom. 26 (1987), 397-428.
- 5. R. Fintushel and R. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), 335-364.
- 6. M. H. Freedman, *The topology of four-dimensional manifolds*, J. Differential Geom. 17 (1982), 357-453.
- 7. P. M. Gilmer and C. Livingston, On embedding 3-manifolds in 4-space, Topology 22 (1983), 241-252.
- 8. H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- C. D. Hodgson, Involutions and isotopies of lens spaces, Master's thesis, Univ. of Melbourne, 1981.
- 10. K. Kuga, Representing homology classes of $S^2 \times S^2$, Topology 23 (1984), 133-137.
- 11. Y. W. Lee, Contractibly embedded 2-spheres in $S^2 \times S^2$, Proc. Amer. Math. Soc. 85 (1982), 280–282.
- 12. K. Millett and D. Rolfsen, A theorem of Borsuk-Ulam type for Seifert-fibred 3-manifolds, Math. Proc. Cambridge Philos. Soc. 100 (1986), 523-532.
- 13. Y. Sato, Smooth 2-knots in $S^2 \times S^2$ with simply-connected complement are topologically unique, Proc. Amer. Math. Soc. (to appear).
- 14. F. Quinn, Isotopy of 4-manifolds, J. Differential Geom. 24 (1986), 343-372.
- 15. E. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan